Engineering Pak1 Allosteric Switches
نویسندگان
چکیده
منابع مشابه
Engineering Pak1 Allosteric Switches.
P21-activated kinases (PAKs) are important regulators of cell motility and morphology. It has been challenging to interrogate their functions because cells adapt to genetic manipulation of PAK, and because inhibitors act on multiple PAK isoforms. Here we describe genetically encoded PAK1 analogues that can be selectively activated by the membrane-permeable small molecule rapamycin. An engineere...
متن کاملEngineering allosteric protein switches by domain insertion.
Domain insertion is proving to be an effective way to construct hybrid proteins exhibiting switch-like behavior. In this strategy, two existing domains, the first exhibiting a signal recognition function and the second containing the function to be modulated, are fused such that the recognition of the signal by the first domain is transmitted to the second domain, thereby modulating its activit...
متن کاملEngineering precision RNA molecular switches.
Ligand-specific molecular switches composed of RNA were created by coupling preexisting catalytic and receptor domains via structural bridges. Binding of ligand to the receptor triggers a conformational change within the bridge, and this structural reorganization dictates the activity of the adjoining ribozyme. The modular nature of these tripartite constructs makes possible the rapid construct...
متن کاملEngineering modular protein interaction switches by sequence overlap.
Many cellular signaling pathways contain proteins whose interactions change in response to upstream inputs, allowing for conditional activation or repression of the interaction based on the presence of the input molecule. The ability to engineer similar regulation into protein interaction elements would provide us with powerful tools for controlling cell signaling. Here we describe an approach ...
متن کاملEngineering modular ‘ON’ RNA switches using biological components
Riboswitches are cis-acting regulatory elements broadly distributed in bacterial mRNAs that control a wide range of critical metabolic activities. Expression is governed by two distinct domains within the mRNA leader: a sensory 'aptamer domain' and a regulatory 'expression platform'. Riboswitches have also received considerable attention as important tools in synthetic biology because of their ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Synthetic Biology
سال: 2017
ISSN: 2161-5063,2161-5063
DOI: 10.1021/acssynbio.6b00359